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ABSTRACT We describe an efficient algorithm
to construct genome wide haplotype restriction maps
of an individual by aligning single molecule DNA frag-
ments collected with Optical Mapping technology. Us-
ing this algorithm and small amount of genomic mate-
rial, we can construct the parental haplotypes for each
diploid chromosome for any individual, one from the fa-
ther and the other from the mother. Since such haplo-
type maps reveal the polymorphisms due to single nu-
cleotide differences (SNPs) and small insertions and dele-
tions (RFLPs), they are useful in association studies,
studies involving genomic instabilities in cancer, and ge-
netics. For instance, such haplotype restriction maps of
individuals in a population can be used in association
studies to locate genes responsible for genetics diseases
with relatively low cost and high throughput.

If the underlying problem is formulated as a combi-
natorial optimization problem, it can be shown to be
NP-complete (a special case of K-population problem).
But by effectively exploiting the structure of the under-
lying error processes and using a novel analog of the
Baum-Welch algorithm for HMM models, we devise a
probabilistic algorithm with a time complexity that is
linear in the number of markers.

The algorithms were tested by constructing the first

genome wide haplotype restriction map of the microbe

T. Pseudoana, as well as constructing a haplotype re-

striction map of a 120 Megabase region of Human chro-

mosome 4. The frequency of false positives and false

negatives was estimated using simulated data. The em-

pirical results were found very promising.

∗To whom correspondence should be addressed. E-mail:
tsa@biostat.wisc.edu, Tel: 608-3470637

1 Introduction

Diploid organisms, such as humans, carry two mostly similar
copies of each chromosome, referred to as haplotypes. Vari-
ations in a large population of haplotypes at specific loci are
called polymorphisms. The co-associations of these varia-
tions across the loci indices are of intense interest in disease
research.

The polymorphic marker of most interest has been the Sin-
gle Nucleotide Polymorphism (SNP). There are estimated to
be 15 million such markers over the entire human genome
(including only SNPs where the minor allele occurs at least
5% of the time) and a realistic genome wide association study
would require at least 1000 samples to be tested for each of
these 15 million SNPs. By taking advantage of linkage dise-
quilibrium [1, 7, 8, 17] the number of SNPs that need to be
tested can be reduced to about 300,000. The main limitation
of most SNP based approaches is that each SNP is assayed
separately and hence it is not possible to accurately infer the
exact haplotype map for a particular individual (which we
will refer to as an individual haplotype map and is sometimes
called one-individual haplotype map or personal haplotype

map) from SNP assays alone. Instead, the phase is inferred
statistically from a large population of SNP data. These
phasing algorithms use assumptions such as parsimony in the
total number of different haplotypes in the population, the
Hardy-Weinberg equilibrium, perfect phylogeny to combina-
torially constrain the possible haplotypes [5, 9, 10, 12, 14]
or alternatively, use statistical approaches [19, 21] (available
as phase and haplotyper software packages). The statis-
tical algorithms have tended to be bit more accurate, but
unforgivingly slow. The results of all these algorithms are
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2 PROBLEM FORMULATION 2

referred to as population haplotype maps and are typically
only 90–95% accurate in any particular map on average and
would thus rarely be correct in any individual haplotype.
The inaccuracies emanate from multiple, complex and un-
wieldy sources of errors: population stratifications, violation
to perfect phylogeny assumption (with hemizygous deletions
or gene conversion), or corrupted data manifesting as geno-
type errors. Thus, it is necessary that we explore new di-
rect and cost-effective methods, where a single individual’s
genome is analyzed to create the haplotype sequences or
maps without making any overly generalized assumptions,
using population wide statistics, or requiring the availability
of parental genomes (as in trio-studies).

For a genotyping method to be able to correctly deter-
mine the phasing between neighboring polymorphic mark-
ers in every individual haplotype map, it must ultimately
be able to test single DNA fragments containing 2 or more
heterozygous polymorphic markers in a single test. It is pos-
sible, of course, to assemble individual haplotype maps by
sequencing the individual’s entire genome using a modified
sequence assembly algorithm [16, 24] but the cost of doing
this is prohibitive1.

Here, we propose a direct and more cost-effective approach
using the fairly well developed single molecule technology of
Optical Mapping. We demonstrate the feasibility of con-
structing such an accurate individual haplotype map of re-
striction sites through pilot-scale experiments and simula-
tion studies. A brief description of the data generated by
Optical Mapping technology is given in the following sec-
tion, and many more details of the technology can be found
in the literature (e.g. [15, 18, 25]). Unfortunately, the in-
put genomic data that can be collected from a single DNA
molecule by the best chemical and optical methods (such
as those used in Optical Mapping) are corrupted by many
poorly understood noise processes. Thus to make this sys-
tem feasible, the biggest challenge has been in developing
accurate Bayesian probabilistic models of errors for experi-
ment design and efficient maximum likelihood algorithms to
achieve accuracy with sufficiently redundant data.

Each individual haplotype map of restriction sites will only
detect a small fraction of all polymorphisms in the human
genome, but using the same linkage disequilibrium assump-
tion mentioned previously, approximately 8 individual hap-
lotype restriction maps will contain more than the 300,000
SNPs required to infer all other known polymophisms in the
individual genome. Even with 50 fold data redundancy re-
quired, all date required for 8 individual haplotype restric-
tion maps can be collected for under $1000.

In this paper, we present an unambiguous mathemati-

1This cost has been estimated to be over $10 million per individual

cal formulation of the problem (section 2), combinatorial
complexity of the resulting problem (also section 2), an effi-
cient probabilistic algorithmic solution built upon a detailed
Bayesian model of the underlying error sources (section 3)
and finally, its complexity analysis (section 4). We also pro-
vide data on the performance of the algorithm on real and
simulated examples (section 5) and conclude with a discus-
sion of the future problems (section 6).

2 Problem Formulation

Our problem can be formulated mathematically as follows:
We assume that all individual single molecule DNA frag-
ments are derived from a diploid genome (ignoring the case
of sex chromosomes) with two copies of homologous chromo-
somes. Each DNA fragment is further mapped by cleavage
with a restriction enzyme of choice and imaged by an imag-
ing algorithm to produce an ordered sequence of “restriction
fragment lengths” or equivalently, “restriction sites.” The
variations in these restriction fragment lengths are primar-
ily due to RFLPs as well as SNPs at the restriction sites.
Additionally, there are further variations introduced by the
experimental process and could be assumed due to: sizing
errors, partial digestion, short missing restriction fragments,
false cuts, ambiguities in the orientation, optical chimerisms,
etc. Thus, the genomes may be represented as two haplo-
type restriction maps, H1 and H2, for the same individual
which differ only slightly from a genotype restriction map H
by a small number of short insertions, deletions and SNPs
that coincide with restriction sites. All such maps, H , H1

and H2, are assumed to be representable as a sequence of re-
striction sites (e.g. H2,i, with indices 0 ≤ i ≤ (N +1), where
H2,0 and H2,N+1 represent the chromosome ends), but are
unknown. However, short DNA fragments of around 500
Kb derived from such maps, and further corrupted by ex-
perimental noise processes can be readily generated at high
throughput and very low cost using a technology like Opti-
cal Mapping [15, 18, 25]. These short DNA fragments will
be written as Dk, with indices 1 ≤ k ≤ M , where M is
the number of data fragments and each data fragment is in
turn represented as a sequence of restriction sites (e.g. Dk,j ,
0 ≤ j ≤ mk + 1 ) and can be aligned globally to create
an estimate of genotype map H using algorithms described
previously [3].

The algorithmic problem, we wish to study, is to further
separate H into two maps H1 and H2 in such a manner that
each data fragment Dk is aligned well to one haplotype or
other and that H1 and H2 differ from H only by modifica-
tions consistent with SNPs or RFLPs polymorphisms.

Thus, ultimately, this problem corresponds to a problem of
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refining a multiple map alignment in to two families, starting
with one global alignment. A combinatorial generalization,
where the number of such families is arbitrarily large (k > 1)
and the cost of each alignment is arbitrarily unconstrained,
has been shown to lead to computationally infeasible prob-
lems. See [20] for the proof of NP-completeness as well as
a probabilistic analysis to show conditions under which the
problem can be solved efficiently with a probability close to
one. The key to an effective solution of these problems re-
lies on careful experiment design (e.g., choice of coverage,
restriction enzyme, experimental conditions, etc.) to ensure
conditions under which a polynomial time probabilistic algo-
rithm will work with high probability in conjunction with a
Bayesian error model that encodes the error processes prop-
erly.

To construct individual haplotype maps from Optical
Mapping data we use a mixture hypothesis of pairs of maps
H1 and H2 for each chromosome, corresponding to the cor-
rect restriction map of the two parental chromosomes. We
first assemble the data into a regular map of the entire
genome and use this assembly to separate the data into dis-
tinct chromosome sets: all maps from the same chromosome
belonging to a pair will be included in the same set. We
then use a probabilistic model of the errors in the data to
derive conditional probability density expressions f(Dk|H1)
and f(Dk|H2), and apply Bayes rule to maximize a score
for the best alignment with respect to proposed H1 and H2,
Equation 1.:

f(H1, H2|D1, . . . , DM ) (1)

∝ f(H1, H2)f(D1, . . . , DM |H1, H2)

The first term on the right side is the prior probability of
H1 and H2 and we just use a low prior probability for each
polymorphism (difference in H1 vs. H2). For the conditional
probability term, we can assume each map is a statistically
independent sample from the genome and that the mapping
errors are drawn from i.i.d. distributions and hence write:

f(D1, . . . , DM |H1, H2) =

M∏

k=1

[f(Dk|H1) + f(Dk|H2)]

2
(2)

The conditional terms of the form f(Dk|Hi) above can
be written as a summation over all possible (mutually ex-
clusive) alignments between the particular Dk and Hi, and
for each alignment the probability density is based on an
enumeration of the map errors in the alignment and mul-
tiplying together the probability associated with each error
under some suitable error model. The exact form of the er-
ror models suitable for Optical Mapping is described in the
next section, but for almost any error models used the sum

of the probability for all alignments can be computed effec-
tively using dynamic programming. In the next two sec-
tions, we will derive the dynamic programming recurrence
relations for this problem and show how to implement the
algorithm with attractive computational complexities. Us-
ing these alignment algorithms, we will see how it is possible
to quickly search through the space of all haplotype pairs to
find the most plausible ones consistent with the data.

Other methods for assembling Optical Mapping data for
relatively short clones into genotype restriction maps exist,
e.g., ones based on Markov Chain Monte Carlo search [22] or
Maximum Likelihood [23] or heuristic scoring functions [13].
However these methods are yet to be scaled to map whole
genomes. Even for restriction maps of BAC clones these
methods produce the correct map only 50% of the time [13]
and have no way of signaling when the method fails.
Bayesian algorithms [3, 4], similar to the ones described
here, are routinely used by untrained chemists and biolo-
gists to assemble genotype restriction maps with a success
rate of higher than 90%, and produce p-values to signal fail-
ure rather than produce an incorrect map.

3 Algorithm

3.1 Computing Conditional Probabilities

for a Hypothesis

Theorem 3.1 Consider an arbitrary alignment between the

data D and the hypothesis H, J th restriction site of D
matching the Ith restriction site of H. We will denote this

aligned pair by J 7→ I.
Let the probability density of the unaligned portion on

the left and right end of such an alignment be denoted by

fur(I, J) on the right end if J 7→ I is the rightmost aligned

pair, and ful(I, J) on the left end if J 7→ I is the leftmost

aligned pair.

In addition, the following probability density functions fm

and fa denote the following:

fm(I, P ) = Pr[H [I..P ] is missing in

the observed data D].

fa(I, J, P, Q) = Pr[H [I..P ] is an aligned region but not

a missing fragment with respect to

the observed data region D[J..Q]].

We assume that I < P and J < Q.
Then the following holds:

f(D|H) =
N

X

I=1

m+1
X

J=0

ful(I, J)f(D[J..m + 1]|H [I..N ] ∧ J 7→ I).
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Figure 1: To define the notation required we consider a single arbitrary alignment between a particular data D and
hypothesis H . Recall that N is the number of restriction sites in H and m the number of restriction sites in D. Any
arbitrary alignment between D and H can be described as a list of pairs of restriction sites from H and D that describes
which restriction site from H is aligned with which restriction site from D. As an example, Here the alignment consists of
4 aligned pairs (4, 2), (5, 2), (I, J) and (P, Q). Notice that not all restriction sites in H or D need be aligned. For example
between aligned pairs (I, J) and (P, Q) there is one misaligned site on H and D each, corresponding to a missing site
(false-negative) and extra-site (false-positive) in D. In this alignment a true small fragment between sites 4 and 5 in H are
missing from D, which is shown by aligning both sites 4 and 5 in H with the same site 2 in D. Note that if two or more
consecutive fragments in H are all missing in D, this would be described by aligning all sites for the missing fragments in
H with the same site in D (rather than showing only the outermost of this set of consecutive sites in H aligned with D,
for example). The expression for the conditional probability density of any alignment, such as the one here, can be written
as the product of a number of probability terms corresponding to the regions of alignment between each pair of aligned
sites, plus one probability term for each unaligned region at the two ends of the alignment.

f(D[J..m + 1]|H [I..N ] ∧ J 7→ I)

= fur(I, J)

+fm(I, I + 1)f(D[J..m + 1]|H [I + 1..N ] ∧ J 7→ (I + 1))

+
N

X

P=I+1

m+1
X

Q=J+1

fa(I, J, P, Q)f([Q..m + 1]|H [P..N ] ∧ Q 7→ P )

In particular, if the intermediate values are kept in a DP

table Asuf [I, J ]

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I)

then it is easily seen that f(D|H) can be computed exactly

in O(m2N2) time and O(mN) space, assuming that fm and

fa are O(1) time functions and ful and fur are O(N) time

functions. 2

In a later section we will see how to reduce the complexity
to linear time when we only require an ǫ-approximate value
f̃

f(D|H) − ǫ < f̃(D|H) < f(D|H) − ǫ,

for the probability density function arising in the context of
optical mapping as follows:

fm(I, I + 1) = PHI+1−HI

ν

fa(I, J, P, Q) = λQ−J−1Pd(1 − Pd)
P−I−1(1 − Pν)HP −HI

×G(HP −HI ),σ2(HP −HI )(DQ − DJ),
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where

Pd = the digest rate,

λ = the false-positive site rate,

σ2h = the Gaussian sizing error variance

for a fragment of size h,

Pν = the probability of missing a

fragment of unit size, and

Re = the breakage rate of DNA

(the inverse of the expected fragment size).

For a random variable x following a Gaussian distribution
N (µ, σ2), the probability density value at d is

Gµ,σ2(d) =
exp[−(d − µ)2/2σ2]√

2πσ
.

The exact form of the functions for ful and fur for Optical
Mapping are complicated, but not very important in under-
standing the complexity of the algorithm; thus a detailed
discussion is omitted here, but can be seen in the appendix.
Note that, at first glance, ful and fur may appear to be
O(N) time functions, but it is easily seen that they permit
O(1) ǫ-approximation.

As it has been shown elsewhere [2], a good approximate
location of the best alignment between D and H can be de-
termined in O(1) expected time, if the conditional probabil-
ity density has been previously evaluated for a similar H or
alternatively, through a geometric hashing algorithms. Only
a O(1)-width band of the DP table needs to be evaluated

to compute an ǫ-approximation f̃(D|H). In particular, the
band width of the DP table used in practice is usually about
∆ = 8; more generally for Optical mapping ∆ is bounded by

(1 − Pd)
∆−1 = ǫ, or ∆ = 1 +

ln(ǫ)

ln(1 − Pd)
.

With this approach we achieve a reduced time complexity of
O(min(m, N)) (more explicitly, O(min(m∆3, N))).

3.2 Recomputing Conditional Probabili-

ties for a Modification to Hypothe-

sis

We next consider following problem: How can one re-
evaluate the conditional probability distribution function,
f(D|H ′ = p(H)) when the new hypothesis, H ′, has been ob-
tained by locally changing H in just one place (correspond-
ing to a polymorphism). There are three cases to consider.
We study one of the three cases here in detail and refer the

reader to the appendix: for details. The omitted cases are
similar but tedious.

We may obtain H ′ by

1. Deleting one of the existing restriction sites in H , as the
site may contain a heterozygous SNP;

2. Adding a new restriction site at a specified location in
H , symmetrical to the previous case;

3. Increasing or decreasing a restriction fragment length in
H , an RFLP;

Consequently, we may also need to compute the first and
second derivative of f(D|H) relative to the change in any
fragment size in H .

Theorem 3.2 Consider an arbitrary alignment between the

data D and the hypothesis H, J th restriction site of D
matching the Ith restriction site of H. Using the notations

of the previous subsection, we write:

Asuf [I, J ] = f(D[J..m + 1]|H [I..N ] ∧ J 7→ I), and

Apref [I, J ] = f(D[0..J ]|H [1..I] ∧ J 7→ I).

Then

Asuf [I, J ]

= fur(I, J) + fm(I, I + 1)Asuf [I + 1, J ]

+

N∑

P=I+1

m+1∑

Q=J+1

fa(I, J, P, Q)Asuf [P, Q],

and similarly,

Apref [I, J ]

= ful(I, J) + Apref [I − 1, J ]fm(I − 1, I)

+

I−1∑

P=1

J−1∑

Q=0

Apref [P, Q]fa(I, J, P, Q),

If H \ {HK} is obtained from H by deleting the site HK ,
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then

f(D|H \ {HK})
= Pr[Alignments with rightmost aligned I < K]

+Pr[Alignments with leftmost aligned J > K]

+Pr[Alignments with a fragment spanning

H [K − 1..K + 1]]

=
K−1
X

I=1

m+1
X

J=0

Apref [I, J ]f (−Hk)
ur (I, J)

+
N

X

I=K+1

m+1
X

J=0

f
(−Hk)
ul (I, J)Asuf [I, J ]

+IK<N

m+1
X

J=0

Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+
m+1
X

J=0

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd

Asuf [P, Q],

where f
(−Hk)
ul and f

(−Hk)
ur are computed respectively from ful

and fur by suitable simple modifications.

Then it is seen that f(D|H \ {HK}), ∀K 1 ≤ K ≤ N , can

be computed exactly in O(m2N2) time and O(mN) space,

assuming that fm and fa are O(1) time functions and ful

and fur are O(N) time functions.

Proof Sketch:

We omit the derivation of the recurrence relation. In or-
der to see how the stated computational complexity can be
achieved, observe that: (1) We can amortize the cost of com-
puting f(D|H \ {HK}) over all 1 ≤ K ≤ N by evaluating

each term with fa(I, J, P, Q), f
(−Hk)
ur (I, J), f

(−Hk)
ul (I, J) just

once. For example, any term

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd
Asuf [P, Q]

will be present in the summation of f(D|H \ {HK}) for all
I < K < P and absent for all other K.

(2) If all f(D|H \ {HK}) for all 1 ≤ K ≤ N are summed
into a table F [K = 1..N ] where each

F [K] = f(D|H \ {HK}) − f(D|H \ {HK−1})

except F [1] = f(D|H \{H1})), we just need to add this term
to F [I + 1] and subtract it from F [P ]. Then it is easily seen
that both the DP tables Apref [I, J ] and Asuf [I, J ] and the
table F [K = 1..N ] can be computed exactly in O(m2N2)
time and O(mN) space, assuming that fm and fa are O(1)
time functions and ful and fur are O(N) time functions. 2

A few simple remarks are in order: The probability
f(D|H \ {HK}) we wish to compute can be extracted from

table F by adding up the region F [1..K], which can be done
for all K in O(N) time.

If we only wish to compute an ǫ-approximation f̃ , for some
consecutive range of m different K values, one can compute
these m probabilities f(D|H \ {HK}) for each kind of mod-
ification in O(min(m, N)) time:

1. To delete a restriction site from H : Total cost =
O(min(m∆3, N)) for total of m restriction sites.

2. To change the size of a restriction fragment in H by
δ: Total cost = O(min(m∆3, N)) for changing each of
(m + 1) restriction fragments.

3. To add T new restriction sites in H : Total cost =
O(min(m∆3 + T∆4, N)). Note that typically T ≤ m.

4. To compute the first two derivatives

∂df(D|H)

∂F d
k

, d = 1, 2, and k = 0, . . . , m

of f(D|H) relative to each of m+1 fragment sizes: Total
cost = O(min(m∆3, N)).

3.3 Search Algorithm for Haplotypes

The recurrence equations of the previous subsections and
the dynamic programming algorithms based on those allow
us to efficiently compute the posterior probability for a single
possible pair of maps H1 and H2 and their modifications

[
H

(0)
1

H
(0)
2

]
⇒
[

H
(1)
1

H
(1)
2

]
⇒
[

H
(2)
1

H
(2)
2

]
⇒ · · ·

The computationally expensive part of computing the hap-
lotype map algorithm is the search over possible maps H1

and H2 in order to find the one with the highest posterior
probability.

Initially, we assume that a single genotype map hypothesis
H has been computed and it has been determined that H
best matches all data. The algorithms to compute such maps
have been developed [4, 3] and have been in use for more than
five years. The speed of the main algorithm, GenTig, has
been improved through an important heuristic stage that re-
lies on geometric hashing to quickly identify the maps that
overlap, and can also be used in the context of haplotyp-
ing. The time complexity of this geometric-hashing-stage is
super-linear and is given as

TH = O(N + M
4/3
D ), where MD =

M∑

j=1

mj + 1,
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i.e., MD is the total number of fragments in the optical map-
ping data. We will see that the actual time for this stage TH

is dominated by the remaining computation involving search
over possible haplotype pairs H1 and H2, unless the genome
we are dealing with is much larger than the human genome;
see next subsection.

If our initial hypothesis is H , then H
(0)
1 = H

(0)
2 = H , and

at each stage H
(i)
1 and H

(i)
2 must then be refined by trying to

add or delete restriction sites and by adjusting the distance
between restriction sites by doing a gradient optimization of
the probability density of all maps for each fragment size.

The result is H
(i+1)
1 and H

(i+1)
2 .

Note that at each hypothesis-recomputation step, trying
each new restriction site polymorphism involves modifying
H1 or H2 by adding or deleting a restriction site from H1 (or
H2) only, while trying an RFLP involves modifying the same
interval in both H1 and H2 by adding some δh to H1 and
subtracting the same δh from H2. In each case both possible
“phases” of each polymorphism is to be accounted for, re-
versing the use of H1 and H2 above. Since both phases must
be tested and the better scoring one selected, except when
adding the first polymorphism to H1 and H2, the search
process can easily turn in to 2O(N).

Note also that if the data cannot allow the phasing to
be determined because there are no (or insufficient) data
molecules spanning both polymorphisms, both phases (ori-
entations) will score almost the same. This fact is also
recorded since it marks a break in the phasing of polymor-
phisms.

Further note that RFLP polymorphisms are more expen-
sive to score, since in addition to the phasing (whether H1

or H2 has the bigger fragment) it is necessary to determine
the amount of the fragment size difference for H1 and H2

(the δh value), which can be searched for in O(1) expected
time, and the constant is essentially logarithmic in the ratio
of the expected fragment length to the resolution of optical
mapping. More precisely, this step involves trying a num-
ber of different multiples of δh values that is logarithmic in
the number of total possible values using the well known uni-
modal function maximization algorithm based on the golden
mean ratio. As an example, the total number of δh values re-
quired for any fragment can be bounded by about 20 if the
resolution of δh is set at 0.1Kb and the largest restriction
fragment length is 50Kb; usually, this number is extremely
small: just 1 or 2 small δh values are sufficient to verify that
no polymorphism exists.

A purely greedy addition of polymorphisms to H1 and H2

is not sufficient to get the phases correct as the search can
get stuck in local maxima when two or more polymorphisms
are nearby. We avoid this problem by using a heuristic look

ahead distance of w restriction sites, and scoring all combi-
nations of polymorphisms in this window, before committing
the best scoring set of polymorphisms in H1 and H2. With a
sufficiently large window size w, the fraction of the polymor-
phic sites the algorithm misses or phases incorrectly can be
made negligible. Since this heuristic can increase the worst
case complexity of the algorithm exponentially with the win-
dow size w we heuristically determine the smallest possible
window w by using simulated data and search the space of
possible polymorphisms within a window by adding/deleting
just one or two polymorphisms at a time until no further im-
provement in the probability density occurs.

The overall algorithm must try every possible restriction
site and fragment as a possible polymorphic SNP or RFLP
respectively using a rolling window of size w restriction sites.
This process must be repeated a few times until no further
polymorphisms are detected. Typically just two to three
iterations of scanning all restriction sites suffice.

3.4 Complexity and Algorithm improve-

ments

The overall complexity of the basic haplotype search algo-
rithms described here, just using the basic DP algorithm
from Theorem 3.1, is

Time Complexity

=

M∑

j=1

Time to compute f(Dj |H)

+
3N∑

i=1

M∑

j=1

Time to compute f(Dj |H(i)
1 )

and f(Dj|H(i)
2 )

= O




M∑

j=1

mj + N



+ 3N × O




M∑

j=1

mj + N





= O(M2
D/C + N),

where C = coverage and C = (1/N)
∑M

j=1 mj

A couple of simple tricks can be used to significantly speed
up the evaluation of conditional probabilities. First H1 and
H2 are typically only being modified in a single location
at a time. If a data map Dj did not previously overlap
H1 or H2 anywhere near the location we are modifying, we
can simply reuse its previous conditional probability density
values f(Dj |H1) and f(Dj |H2). Since the average number of
DNA fragments overlapping any point of the genome is C, a
number considerably less than the total number of fragments
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M , this makes the total cost of the search for the best H1

and H2 asymptotically O(MDm).
The algorithm can be improved further if we use the dual

DP tables from Theorem 3.2, in which m consecutive changes
to H1 and H2 can be tested in just three times the time it
previously took to test just one change to H1 and H2. In
this case we will recompute the dual DP algorithm for the
approximately 2C DNA fragments at a time, where these are
just the fragments that overlap m consecutive sites. Hence
the speedup from switching to the dual DP tables is ap-
proximately m/6 resulting in an asymptotic complexity of
O(MD)

4 Empirical Results

4.1 Haplotype mapping of 22 chromo-

somes of T. Pseudoana

Optical Mapping data was previously collected by Dr. Shiguo
Zhou of University of Wisconsin in order to assemble a nor-
mal NheI restriction map of the microorganism T. Pseu-

doana (Diatom). To test the haplotyping algorithms de-
scribed above, we selected the 22 largest chromosomes (out
of 25) and separated out the data for each chromosome in
order to be able to run the haplotyping algorithm on 22 sepa-
rate machines. For all except chromosome 19, the algorithm
was able to successfully phase all polymorphisms and gener-
ate two separate maps. Chromosome 19 has all of its poly-
morphisms near the two ends of the chromosome and there
were not enough molecules that spanned the chromosome
end to end to allow their relative phase to be determined.

4.2 Haplotype mapping of 120Mbase re-

gion of human genome

We also selected a subset of the Human Optical Mapping
data collected by Mr. Alex Lim of University of Wisconsin
to assemble the first genome wide SwaI restriction map of
the Human genome. The current data set provides an aver-
age of 12× data redundancy over the entire human genome,
which is insufficient to reliably assemble a genome wide map.
Moreover the typical molecule size of 500Kb was shorter
than assumed by our simulation. However we selected data
that had assembled into a 120Mbase contig and was iden-
tified as part of chromosome 4 on the basis of alignment
with sequence published by NIH. Even though 12× data
redundancy is only sufficient to assemble a haplotype map
with low reliably (see next section) chromosome 4 is known
to have 60% more SwaI restriction sites than the rest of
the human genome which, increases the likelihood that the

typical 500Kb molecule in the data can span two to three
restriction site polymorphisms. Therefore we attempted to
reassemble the data using the haplotype assembly algorithm.
The program found 233 restriction site polymorphisms and
12 fragment length polymorphisms, and was able to phase
all polymorphisms into 2 contiguous regions. Using simula-
tion studies (see next section), we have determined that one
needs to wait until about 50× data redundancy is available
when a reliable map can be constructed for this region as
well as the rest of the human genome.

4.3 Simulated Data

With real data it is not easy to determine what fraction of
false positive or false negative polymorphisms is present in
the final map since the true haplotype map is not known
independently of our method. To check if this is a prob-
lem, we generated simulated data approximating the first 5
mega bases of human chromosome 21, and the typical error
rates for Optical Mapping data based on maximum likeli-
hood estimates from previous microbial maps [15, 18, 25]
(The more recent data used in the previous sections had
maximum likelihood error estimates about 30% better, so
the estimates used here are conservative). The simulated
data was assembled using different amounts of simulated
data corresponding to data redundancy of 6×, 12×, 16×,
24×, 50× and 100× (per haplotype). The results are sum-
marized in Table 1. To understand these numbers consider
row 4 corresponding to 16× redundancy). The last column
shows that we used 80 molecules in the simulation. Of these
80 molecules the software classified 71 molecules into one
of the two haplotype variants. In fact the software made 2
errors and correctly classified only 69 molecules. By com-
paring the two consensus maps generated by the software
we created a list of restriction sites classified as polymor-
phic (i.e. a SNP was claimed by the software to exist at
a restriction site) and this list was then compared with the
correct list of SNPs generated from the true in-silico maps.
The column with the header “fp SNPs” shows the number
of false-positive SNPs claimed by the software. The column
with the header “fn SNPs” shows the corresponding number
of false-negative SNPs. Similarly for RFLPs (i.e. fragment
size polymorphisms due to the simulated insertions/deletions
of 3Kb).

5 Discussions and Future Work

Single molecule mapping technologies, such as Optical Map-
ping, are ideal for detecting genetic markers with phasing in-
formation and without population-based assumptions. We
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Redundancy fp SNPs fn SNPs fp RFLPs fn RFLPs Phase err Molecules

6x 5 5 1 18 7/26 30
12x 4 2 4 16 2/55 60
16x 2 1 0 12 2/71 80
24x 2 1 1 11 3/111 120
50x 0 1 1 5 4/228 250
100x 0 0 2 1 2/441 500

Figure 2: Haplotyping algorithm performance for 16 SNPs and 24 RFLPs.

formulated an abstraction of the haplotype map assembly
problem for all such single molecule mapping technologies
and provide a probabilistic linear time algorithm to assem-
ble haplotype maps by combining single molecule restriction
maps of long genomic DNAs of average length at least 500Kb
containing 2 or more heterozygous polymorphic restriction
sites on average.

Single molecule mapping technologies have many advan-
tages over SNP based approaches; we enumerate four. First,
restriction maps can reveal not only SNPs that coincide
with the restriction sites, but also micro-insertions and dele-
tions, global rearrangements or hemizygous deletions. Even
though there is only about 1 micro-insertion or deletion for
every 12 SNPs, the average size of a micro-insertion or dele-
tion is over 36 base pairs, and hence accounts for over 75% of
all base pair differences vs. just 25% for SNPs [6]. Second,
since single molecule methods work directly with genomic
DNA and do not require the use of PCR, with such single-
molecule methods one can identify markers in repeat regions,
segmental duplications, SINES, LINES etc.— regions occu-
pying almost half of the human genome. Third, since sin-
gle DNA molecule segments are mapped using fluorescent
microscopy, this approach is capable of very high through-
put (limited primarily by the digital camera throughput)
requiring very little DNA, and costs a fraction of the com-
parable cost for the least expensive SNP based approaches.
Of course such a individual haplotype map will reveal only
those polymorphic markers (including SNPs) that coincide
with restriction sites, but this can be overcome by collect-
ing maps for multiple restriction enzymes: Based on the
known SNPs and extrapolating to an estimated minimum
10 million SNPs, then using 4 restriction enzymes with av-
erage fragment sizes of 2–4Kb it is possible to detect approx-
imately 200,000 SNPs plus an estimated 130,000 other poly-
morphisms. This can be extended to about 1 million SNPs
and 650,000 other polymorphisms by using about 50 methy-
lation insensitive restriction enzymes in 20 groups. Finally,
by suitable choice of restriction enzymes, Optical Mapping is
also capable of detecting the epigenetic state in the form of

methylated CpG bases which are resistant to many restric-
tion enzymes. Epigenetic information is known to play a key
role in genetic diseases like cancer and explains why identical
twins may display different genetic traits even though they
share the same genetic code.

We estimate that our approach is currently the only ap-
proach that can produce a genome wide individual haplotype
map for under $1000 (based on 8 restriction enzyme haplo-
type maps). The dominant SNP based approach requires
testing of about 300,000 SNPs which costs at least ten times
more per person.

Our approach can be applied to other single molecule map-
ping technologies. When applied to single molecule tech-
nologies to map short 6–8bp LNA hybridization probes, it
can be used to sequence the entire human genome: With
50× coverage the location of probes can be determined to
within about 200bp. Hence well known error tolerant SBH
(Sequencing by Hybridization) algorithms [11] can be used
to determine the sequence within any 200bp window from
maps of a universal set of about 2048 probes of 6bp, al-
lowing a draft quality individual haplotype sequence to be
assembled for about $20,000.

Software

HapTig software will be available soon at
http://www.bioinformatics.cims.nyu.edu/~mishra
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appendix

The goal of the various DP programming formulations in this
paper have been to compute f(D|H), or f(D|H ′) when H is
perturbed to yield H ′, thus yielding the conditional probabil-
ities of a data map D given a hypothesized consensus map
H . This conditional term can be written as a summation
over all possible (mutually exclusive) alignments between the
particular D and H , and for each alignment the probabil-
ity density is based on a straightforward enumeration of the
map errors implied by the alignment. The key to reasonably
fast evaluation of the probability densities summed over all
alignments is the use of a dynamic programming recurrence
equation, which is equivalent to factoring out the common
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sub-expressions of the probability densities across the differ-
ent alignments. First consider a single arbitrary alignment
between a particular D and H . The data map D can be
described by a vector of locations of restriction sites

D =

〈
DJ

〉m+1

J=0

,

where for convenience the first entry D[0] is always 0 and the
last entry D[m+1] is the total size of the map. For notational
convenience we may also refer to the entries of this array as
D[J ] or its subarrays as D[J..Q], where 0 ≤ J ≤ Q ≤ m +1.
Similarly the hypothesis map H will be described by a vector
of restriction sites

H =

〈
HI

〉N+1

I=0

,

with analogous representations of H [I] and H [I..P ] with
0 ≤ I ≤ P ≤ N + 1. An arbitrary alignment can be de-
scribed as a list of pairs of restriction sites from H and D
that describe which restriction site from H is aligned with
which restriction site from D. An example appears in Fig-
ure 1.

The expression for the conditional probability density of
any alignment as defined in Figure 1. can be written as the
product of a term corresponding to the region of alignment
between each pair of aligned sites, plus one term for the
unaligned region at each end of the alignment.

Let

Pd = the digest rate,

λ = the false-positive site rate,

σ2h = the Gaussian sizing error variance

for a fragment of size h,

Pν = the probability of missing a

fragment of unit size, and

Re = the breakage rate of DNA

(the inverse of the expected fragment size).

For a random variable x following a Gaussian distribution
N (µ, σ2), the probability density value at d is

Gµ,σ2(d) =
exp[−(d − µ)2/2σ2]√

2πσ
.

For an aligned region that is not a missing fragment (e.g.,
alignments (I, J) and (P, Q), such that P > I and Q > J)
this probability density will be denoted by a function of the
form fa(I, J, P, Q), which will depend on the specific errors

in the corresponding region of the alignment between D and
H .

fa(I, J, P, Q) = λQ−J−1Pd(1 − Pd)
P−I−1(1 − Pν)HP −HI

×G(HP −HI ),σ2(HP −HI )(DQ − DJ).

Similarly for an aligned region that corresponds to a con-
secutive number of missing fragments the probability den-
sity will be denoted by a function fm(I, P ) (e.g., (I, J) and
(I + 1, J) will correspond to fm(I, I + 1)).

fm(I, P ) = PHP −HI

ν .

Finally for the probability density of the unaligned portion
on the left and right end of each alignment, we shall use
fur(I, J) on the right end if (I, J) is the rightmost aligned
pair, and ful(I, J) on the left end if (I, J) is the leftmost
aligned pair. These in turn are computed in terms of the
auxiliary functions fr and fl:

fr(I, J, P, Q)

= λm−J(1 − Pd)
P−I−1(1 − PHP −HI

ν )[
ReΨ(Dm+1 − DJ , HP − HI , HP − HQ)

+IP=N+1G(HN+1−HI),σ2(HN+1−HI )(Dm+1 − DJ)

]
.

and

fl(I, J, P, Q)

= λJ−1(1 − Pd)
I−P−1(1 − PHI−HP

ν )[
ReΨ(DJ , HI − HP , HQ − HP )

+IP=0G(HI ),σ2(HI )(DJ )

]
.

The function Ψ is defined as follows2:

Ψ(d, h, b)

=
1

2

[
erf

(
d − h + b√

2σ2[(h − b) ∧ (d ∨ h)]

)

+ erf

(
h − d√

2σ2[(h − b) ∧ (d ∨ h)]

)]

2Notations: a ∧ b = max(a, b) and a ∨ b = min(a, b).
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Now the functions fur and ful are defined as follows:

fur(I, J)

=





∑N+1
P=I+1 fr(I, J, P, P − 1),

if J ≤ m;

P
HN+1−HN

ν + Re
P

HN+1−HN

ν − 1

log Pν
,

if I = N & J = m + 1;
0,

otherwise;

and

ful(I, J)

=





∑I−1
P=0 fl(I, J, P, P + 1),

if J ≥ 1;

PH1
ν + Re

PH1
ν − 1

log Pν
,

if I = 1 & J = 0;
0,

otherwise.

Now all that remains is to write down the probability den-
sity of a particular alignment as simply the product of each
of the terms fa, fm, ful and fur while computing Asuf re-
cursively as explained in the body. Note that the proba-
bility density of any alignment can be broken apart into
the product of those terms on either side of any particu-
lar alignment pair (I, J). This observation forms the basis
of a two-dimensional recurrence using the array Asuf [I, J ],
where 1 ≤ I ≤ N and 0 ≤ J ≤ m + 1.

Asuf [I, J ]

= fur(I, J)

+II<Nfm(I, I + 1)Asuf [I + 1, J ]

+
N

X

P=I+1

m+1
X

Q=J+1

fa(I, J, P, Q)Asuf [P, Q]

f(D|H)

=

N
X

I=1

m+1
X

J=0

ful(I, J)Asuf [I, J ].

Next we write down the recurrence equations as we modify
H to H ′.

We start with an explanation for how to efficiently re-
compute f(D|H ′) while deleting one restriction site HK from
H at a time for all possible K, 1 ≤ K ≤ N . The key step
is to compute an additional recurrence array Apref which
represents the sum of the probability densities of all those
alignments between the part of H to the left of site I and the
part of D to the left of site J , for which (I, J) is the right-
most aligned pair. The corresponding recurrence equation

are shown below:

Apref [I, J ]

= ful(I, J)

+II>0Apref [I − 1, J ]fm(I − 1, I)

+

I−1
X

P=1

J−1
X

Q=0

Apref [P, Q]fa(I, J, P, Q)

fk(D|H)

=
K−1
X

I=1

m+1
X

J=0

Apref [I, J ]fur[I, J ] +
N

X

I=K+1

m+1
X

J=0

ful[I, J ]Asuf [I, J ]

+
m+1
X

J=0
»

IK<NApref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)Asuf [P, Q]

–

.

Note that in equation above, none of the terms Apref [I, J ]
or Asuf [I, J ] will change if we remove the restriction site HK

from H . However the terms fa(I, J, P, Q) will change to
fa(I, J, P, Q)/(1−Pd), and fur[I, J ] and ful[I, J ] will change
in a way we will describe below, when HK is deleted. First
we rewrite the previous equation as

fk(D|H)

=

K−1
X

I=1

m+1
X

J=0

Apref [I, J ]

N+1
X

P=I+1

fr(I, J, P, P − 1)

+
N

X

I=K+1

m+1
X

J=0

Asuf [I, J ]

I−1
X

P=0

fl(I, J, P, P + 1)

+
m+1
X

J=0
»

IK<NApref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)Asuf [P, Q]

–

.

We now write down the recurrence equation to reflect the
deletion of HK from H and corresponding changes in fa, fl
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and fr to get the result:

f(D|H \ {HK})

=
K−1
X

I=1

m+1
X

J=0

Apref [I, J ]
N+1
X

P=I+1

f−(Hk)
r (I, J, P, P − 1)

+
N

X

I=K+1

m+1
X

J=0

Asuf [I, J ]
I−1
X

P=0

f
−(Hk)
l (I, J, P, P + 1)

+

m+1
X

J=0
»

IK<NApref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+
K−1
X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
fa(I, J, P, Q)

1 − Pd

Asuf [P, Q]

–

,

where

f−(HK)
r (K, I, J, P )

=

8

>

>

>

>

<

>

>

>

>

:

fr(I, J, P, P − 1)

(1 − Pd)
, if K < P − 1;

fr(I, J, P, P − 2), if K = P − 1;
0, if K = P ;
fr(I, J, P, P − 1), if K > P,

and analogously

f
−(HK)
l (K, I, J, P )

=

8

>

>

>

>

<

>

>

>

>

:

fl(I, J, P, P + 1), if K < P ;
0, if K = P ;
fl(I, J, P, P + 2), if K = P + 1;
fl(I, J, P, P + 1)

(1 − Pd)
, if K > P + 1.

Recurrence equation for adding a restriction site HT to H
somewhere between HK−1 and HK is shown below.

f(D|H ∪ {HT }, HK−1 < HT < HK)

=

K−1
X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

f+(HT )
r (K, I, J, P )

+

N
X

I=K

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

f
+(HT )
l (K, I, J, P )

+

m+1
X

J=0

»

Apref [K − 1, J ]fm(K − 1, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K

m+1
X

Q=J+1

Apref [I, J ]fa(I, J, P, Q)(1− Pd)Asuf [P, Q]

–

+
m+1
X

J=0

A
(HK→HT )
pref [K, J ]A

(HK→HT )
suf [K − 1, J ],

where the the notations A
(HK→HT )
pref [K, J ] (respectively,

A
(HK→HT )
suf [K − 1, J ]) means to evaluate Apref [K, J ] (respec-

tively, Asuf [K − 1, J ]) using its defining equation provided
previously while replacing any occurrence of HK with HT .
Note that the equation shown above depends on the exact
value of HT only in the last summation term. Furthermore

f+(HK)
r (K, I, J, P )

=

8

>

>

<

>

>

:

fr(I, J, P, P − 1)(1 − Pd), if K ≤ P − 1;

f
(HK→HT )
r (I, J, K, K − 1)

+ f
(HK−1→HT )
r (I, J, K, K − 1), if K = P ;

fr(I, J, P, P − 1), if K > P,

and analogously

f
+(HK)
l (K, I, J, P )

=

8

>

>

<

>

>

:

fl(I, J, P, P + 1), if K ≤ P .

f
(HK→HT )
l (I, J, K − 1, K)

+ f
(HK−1→HT )

l (I, J, K − 1, K), if K = P + 1;
fl(I, J, P, P + 1)(1 − Pd), if K ≤ P − 1.

Recurrence equation for adding a small amount δh to one
restriction fragment [HK , HK+1]. Note that this is equiva-
lent to changing

〈H1, . . . , HK−1, HK , HK+1, . . . , HN 〉
→ 〈H1, . . . , HK−1, HK , HK+1 + δh, . . . , HN + δh〉.

f(D|H : ∀T>KHT → HT + δh)

=

K
X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

f (+δh)
r (K, I, J, P )

+

N
X

I=K+1

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

f
(+δh)
l (K, I, J, P )

+

m+1
X

J=0
»

IK≤NApref [K, J ]P δh
ν fm(K, K + 1)Asuf [K + 1, J ]

+

K−1
X

I=1

N
X

P=K

m+1
X

Q=J+1

Apref [I, J ]f (+δh)
a (I, J, P, Q)Asuf [P, Q]

–

,
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where

f (+δh)
a (I, J, P, Q)

= f (HP →HP +δh)
a (I, J, P, Q)

f (+δh)
r (K, I, J, P )

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f
HP−1→HP−1+δh,HP →HP +δh
r (I, J, P, P − 1),

if K < P − 1;

fHP →HP +δh
r (I, J, P, P − 1),

if K = P − 1;
fr(I, J, P, P − 1),

if K ≥ P,

and analogously

f
(+δh)
l (K, I, J, P )

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fl(I, J, P, P + 1),
if K < P ;

fHP →HP −δh

l (I, J, P, P + 1),
if K = P ;

f
HP →HP −δh,HP+1→HP+1−δh

l (I, J, P, P + 1)
if K > P.

Finally the first two (d = 1, 2) partial derivatives of
f(D|H) relative to all fragment sizes FK = HK+1 − HK ,
0 ≤ K ≤ N , can be computed by using the recurrence equa-
tion shown below.

∂df(D|H)

∂F d
K

=
K

X

I=1

m
X

J=0

Apref [I, J ]

N+1
X

P=I+1

∂dfr(I, J, P, P − 1)

∂F d
K

+
N

X

I=K+1

m+1
X

J=1

Asuf [I, J ]

I−1
X

P=0

∂dfl(I, J, P, P + 1)

∂F d
K

]

+IK=NApref [N, m + 1]
∂df

(N)
m

∂F d
N

+IK=0Asuf [1, 0]
∂df

(0)
m

∂F d
0

+

m+1
X

J=0
»

IK<NApref [K, J ]
∂dfm(K, K + 1)

∂F d
K

Asuf [K + 1, J ]

+
K

X

I=1

N
X

P=K+1

m+1
X

Q=J+1

Apref [I, J ]
∂dfa(I, J, P, Q)

∂F d
I

Asuf [P, Q]

–

.

The differential expressions in the recurrence equations are

computed as shown in the following formulæ.

∂dfm(K, K + 1)

∂F d
K

= fm(K, K + 1)(log Pν)d.

∂df
(N)
m

∂F d
N

= fm(N, N + 1)(Re + log Pν)(log Pν)d−1.

∂df
(0)
m

∂F d
0

= fm(0, 1)(Re + log Pν)(log Pν)d−1,

Next, we derive

∂fa(I, J, P, Q)

∂FI

= f(I, J, P, Q)

»



G′(DQ − DJ , HP − HI)

G′(DQ − DJ , HP − HI)
− fm(I, P ) log Pν

1 − fm(I, P )

ff–

∂2fa(I, J, P, Q)

∂F 2
I

= f(I, J, P, Q)

»



G′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)
− fm(I, P ) log Pν

1 − fm(I, P )

ff2

+
G′′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)
−

„

G′(DQ − DJ , HP − HI)

G(DQ − DJ , HP − HI)

«2

−fm(I, P ) log P 2
ν

1 − fm(I, P )2

–

.

where

G(d, h) =
exp[−(d − h)2/2σ2h]√

2πσ2h

G′(d, h) =

„

d2 − h2 − σ2h

2σ2h2

«

G(d, h)

G′′(d, h) =

"

„

d2 − h2 − σ2h]

2σ2h2

«2

− d2

σ2h3
+

1

2h2

#

G(d, h)

Furthermore,

∂fr(I, J, P, P − 1)

∂FK

=

8

<

:

f
(a,1)
r (I, J, P ) − f

(b,1)
r (I, J, P ), if K < P − 1;

f
(a,1)
r (I, J, P ), if K = P − 1;

0, if K ≥ P ,

and analogously

∂fl(I, J, P, P − 1)

∂FK

=

8

<

:

0, if K < P,

f
(a,1)
l (I, J, P ), if K = P ;

f
(a,1)
l (I, J, P ) − f

(b,1)
l (I, J, P ), if K > P ;
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Next, we consider the second derivatives:

∂2fr(I, J, P, P − 1)

∂F 2
K

=

8

<

:

f
(a,2)
r (I, J, P ) − f

(b,2)
r (I, J, P ), if K < P − 1;

f
(a,2)
r (I, J, P ), if K = P − 1;

0, if K ≥ P ,

and analogously

∂2fl(I, J, P, P − 1)

∂F 2
K

=

8

<

:

0, if K < P,

f
(a,2)
l (I, J, P ), if K = P ;

f
(a,2)
l (I, J, P ) − f

(b,2)
l (I, J, P ), if K > P ;

The terms f
(a,1)
r , f

(a,2)
r , f

(a,1)
l , and f

(a,2)
l are defined as

shown:

f (a,1)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1



(1 − fm(I, P ))

»

ReΨa(Dm+1 − DJ , HP − HI , HP−1 − HI)

+IP>NG′(DQ − DJ , HP − HI)

–

−fm(I, P ) log Pν

»

ReΨ(Dm+1 − DJ , HP − HI , HP−1 − HI)

IP>NG(DQ − DJ , HP − HI)

–ff

and

f (a,2)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1

»

ReΨ
′
a(Dm+1 − DJ , HP − HI , HP−1 − HI)

+IP>NG′′(DQ − DJ , HP − HI)

–

Analogously,

f
(a,1)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1



(1 − fm(P, I))

»

ReΨa(DJ , HI − HP , HI − HP+1)

+IP=0G
′(DJ , HI − HP )

–

−fm(P, I) log Pν

»

ReΨ(DJ , HI − HP , HI − HP+1)

IP=0G(DJ , HI − HP )

–ff

and

f
(a,2)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1

»

ReΨ
′
a(DJ , HI − HP , HI − HP+1)

+IP=0G
′′(DJ , HI − HP )

–

Next, the terms f
(b,1)
r , f

(b,2)
r , f

(b,1)
l , and f

(b,2)
l are defined

as shown:

f (b,1)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1(1 − fm(I, P ))

ReΨb(Dm+1 − DJ , HP − HI , HP−1 − HI)

and

f (b,2)
r (I, J, P )

= λm−J (1 − Pd)
P−I−1

ReΨ
′
b(Dm+1 − DJ , HP − HI , HP−1 − HI)

Analogously,

f
(b,1)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1(1 − fm(P, I))

ReΨb(DJ , HI − HP , HI − HP+1)

and

f
(b,2)
l (I, J, P )

= λJ−1(1 − Pd)
I−P−1

ReΨ
′
b(DJ , HI − HP , HI − HP+1)
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Here the functions Ψa, Ψ′

a, Ψb, and Ψ′

b have the following
definitions.

Ψa(d, h1, h2) =
exp[−(d − h1)

2/2σ2(d ∨ h1) ∧ h2]
p

2πσ2(d ∨ h1) ∧ h2

Ψ′
a(d, h1, h2) =

„

d − h1

2σ2(d ∨ h1) ∧ h2

«

Ψa(d, h1, h2)

Ψb(d, h1, h2) =
exp[−(d − h2)

2/2σ2(d ∨ h1) ∧ h2]
p

2πσ2(d ∨ h1) ∧ h2

Ψ′
b(d, h1, h2) =

„

d − h2

2σ2(d ∨ h1) ∧ h2

«

Ψa(d, h1, h2)


